Conclusions: This pilot study suggests that a combination of OST and PEMF using the HOCATT machine could potentially represent potential therapeutic adjuncts for women with inflammatory disorders such as endometriosis.
An attempt to wake up the medical community to accept research done in the last 100 years proving that electromagnetic energy can replace brutal chemotherapy. Photo taken by a professional photographer, of his own daughter being treated for Neuroblastoma. The power of the image encouraged Andy to share it with others in order to highlight the 'real' face of childhood cancer. She died. The average cost for such treatment is in the order of 500k+.
Conclusions: This pilot study suggests that a combination of OST and PEMF using the HOCATT machine could potentially represent potential therapeutic adjuncts for women with inflammatory disorders such as endometriosis.
From Tokyo:
The electrical properties of cancer cells can provide information on their cancer type, state, and drug resistance. However, conventional platforms to measure these properties are complex and can only analyze a few cells. Researchers have successfully developed a high-throughput device that measures the electrical properties of cancer cells through continuous flow electrorotation. The new platform offers a high degree of automation and can simultaneously analyze several cells.
The U.S. Food and Drug Administration has approved the use of sound waves to break down tumors—a technique called histotripsy—in humans for liver treatment.
Pioneered at the University of Michigan, histotripsy offers a promising alternative to cancer treatments such as surgery, radiation and chemotherapy, which often have significant side effects. Today, FDA officials awarded clearance to HistoSonics, a company co-founded in 2009 by U-M engineers and doctors for the use of histotripsy to destroy targeted liver tissue.
A human trial underway since 2021 at the U-M Rogel Cancer Center and other locations has treated patients with primary and metastatic liver tumors via histotripsy, demonstrating the technology’s ability to meet the testing’s primary effectiveness and safety targets.
Currently, tumor-treating field (TTField) therapy utilizes a single “optimal” frequency of electric fields to achieve maximal cell death in a targeted population of cells. However, because of differences in cell size, shape, and ploidy during mitosis, optimal electric field characteristics for universal maximal cell death may not exist. This study investigated the anti-mitotic effects of modulating electric field frequency as opposed to utilizing uniform electric fields.
This unit introduces a spectrum of frequencies all at once, a departure from traditional methods that apply one frequency at a time.
$3+k
Introduction: Although there have been significant advances in research and treatments over the past decades, cancer remains a leading cause of morbidity and mortality, mostly due to resistance to standard therapies. Pulsed electromagnetic field (PEMF), a newly emerged therapeutic strategy, has been highly regarded as less invasive and almost safe to patients, is now a clinically accepted form to treat diseases including cancer. Breast and lung cancer are the most prevalent forms of human cancers, yet reported investigations on exploring regimes including PEMF are limited. Methods: Intended to examine the anti-tumor effects of a clinically accepted osteogenic PEMF and the possibility of including PEMF in breast and lung cancer treatments, we studied the effects of 2 PEMF signals (PMF1 and PMF2) on breast and lung cancer cell growth and proliferation, as well as the possible underline mechanisms in vitro and in vivo. Results: We found that both signals caused modest but significant growth inhibition (∼5%) in MCF-7 and A549 cancer cells. Interestingly, mice xenograft tumors with A549 cells treated by PEMF were smaller in sizes than controls. However, for mice with MCF-7 tumor implants, treatment with PMF1 resulted in a slight increase (2.8%) in mean tumor size, while PMF2 treated tumors showed a 9% reduction in average size. Furthermore, PEMF increased caspase 3/7 expression levels and percentage of annexin stained cells, indicating the induction of apoptosis. It also increased G0 by 8.5%, caused changes in the expression of genes associated with cell growth suppression, DNA damage, cell cycle arrest, and apoptosis. When cancer cells or xenograft tumors treated with combined PEMF and chemotherapy drugs, PEMF showed growth inhibition effect independent of cisplatin in A549 cells, but with added effect by pemetrexed for the inhibition of MCF-7 growth. Conclusion: Together, our data suggested that clinically used osteogenic PEMF signals moderately suppressed cancer cell growth and proliferation both in vitro and in vivo.
Researchers have discovered a new way to target and kill cancer cells in hard-to-treat brain tumours using electrically charged molecules to trigger self-destruction, that could be developed into a spray treatment used during surgery.
Although their recent Phase III Ovarian cancer trail failed, the Phase III LUNAR trial in non-small cell lung cancer, leading to significant and clinically meaningful improvements in OS when used in conjunction with standard of care.
Researchers have discovered that the electrical fields and activity that exist through a cell's membrane also exist within and around another type of cellular structure called biological condensates. Like oil droplets floating in water, these structures exist because of differences in density. Their foundational discovery could change the way researchers think about biological chemistry.
The researchers noticed that electricity enabled the former to heal three times faster than the latter. “We were able to show that the old hypothesis about electric stimulation can be used to make wounds heal significantly faster,” said Asplund.
According to the study authors, an electric field act as a guide to skin cells. In the absence of current, the cells move randomly, and therefore, the process of healing is slow. However, when cells are electrically stimulated, they all align in one direction and migrate fast toward the damaged site, eventually making a wound heal more quickly.
Moreover, no side effects were noticed on the cultured wounded cells due to the electric stimulation.
Researchers have used 100 seconds of laser irradiation to generate convection currents that selectively accelerate biochemical reactions -- due to the photothermal effect -- by concentrating biofunctional molecules at the cell surface. Using this method, useful molecules can be transported into cells at concentrations a hundred to a thousand times lower than with conventional methods. Furthermore, they also succeeded in selectively introducing small molecules into intracellular organelles usually impossible at low concentrations (hundreds of pmol/L) as well as inducing cell death in targeted cells by concentrating anticancer active peptides into them at concentrations so low that they would not be conventionally effective (several tens of nmol/L).
Article: https://www.sciencedaily.com/releases/2023/03/230306101438.htm
IBM Research article I found, very interesting:
The reason I researched this subject, was due to a crop circle I viewed on http://www.cropcircleconnector.com/:
This not only demonstrates the importance of magnetic susceptibility in the biological effects of magnetic field but also illustrates the potential application of high magnetic fields in biomedicine.
A new study suggests that mild, non-invasive electrical stimulation, applied through a cap with electrodes attached, could be enough to combat the effects of getting older and keep our memory circuits in a better and more robust shape.
In this pilot study, we report the use of a novel, patented biophysical technology, which enables intranuclear access and cell nucleus stimulation, via the signal of the biophysically activated regulative molecule 31 (RM31). RM31 is the name of an isolated natural molecule found in the human body and is involved in many cellular mechanisms. We used a specific low electromagnetic field frequency to activate the RM31 molecule, which leads to specific signal transduction, to investigate the effect of telomerase activity in HL60 cancer cells. Our results revealed a dramatic inhibition in telomerase activity, a 99.5% decrease within 72 hours, with avoidance of subsequent reactivation, due to the simultaneous inhibition of human telomerase reverse transcriptase (hTERT).
The Oncomagnetic device consists of 3 oncoscillators securely attached to an acrylonitrile butadiene styrene helmet and connected to a microprocessor-based electronic controller operated by a rechargeable battery (Figure 1). Further details regarding the device are given in the Supplementary Appendix. Based on a finite element model-based calculation of the spread of the field and the size and magnetization of the rotated diametrically magnetized neodymium magnets, we estimated that the combined effective field (at least 1 mT in strength) of the 3 oncoscillators covered the entire brain, including the upper part of the brain stem.
Quote:
It was back in the mid-1990s that Djamgoz first developed what he would later call the cellular excitability or “CELEX” the “CELEX” hypothesis of cancer metastasis. He identified voltage-gated sodium ion channels in many types of epithelial cancer cells that did not belong, and which led to cancer cells producing action potentials as if they were neurons or cardiomyocytes.
“These are normally inert tissues in your gut or skin,” Djamgoz pointed out. “They become hyperactive, excitable, invasive, antisocial, and it is this electrical excitability that drives the cancer cells into an invasive mode.”
The electrical excitability of cancer cells escaped notice for years because traditional methods of measurement, patch clamp, or microelectrode recordings, lacked the sensitivity to capture the signals.
“Instead of poking the cells with micro-electrodes, we want to plate the cells in a petri-dish with these gold microelectrode arrays on the bottom,” Djamgoz continued. “They are now sitting on these electrodes and buzzing with action potentials!”
Not only do cancer cells become unexpected generators of bioelectricity, but they also communicate with the nervous system, seemingly feeding off of it. In a paper published June 2020 in Biochimica et Biophysica Acta — Reviews on Cancer, Djamgoz showed that sympathetic nervous system stimulation seems to drive the early stages of cancer proliferation, while parasympathetic input drives invasiveness and metastasis.
The non-invasive and painless treatment has the potential to lower adverse side effects of chemotherapy, which are sometimes so severe that patients need to terminate treatment early or doctors have to reduce the chemo dosage, and this could worsen their disease.
“Our magnetic technology stimulates cellular oxygen respiration to produce energy,” said team leader Associate Professor Alfredo Franco-Obregón. “In certain cancers with elevated respiratory rates — such as breast tumours — the magnetic pulses cause the cancer cells to ‘hyperventilate’ and die. Fortunately, the healthy tissues near the cancer are able to tolerate the increased respiratory rate, without ill consequences. Therefore, the OncoFTX System is more selective for cancer than conventional chemotherapy or radiotherapy. Importantly, this therapy is localised, non-invasive and painless.
Each session of magnetic therapy involves exposing a breast tumour to a pulsed magnetic field at a strength of 3 millitesla, for one hour. This field amplitude is about 50 times greater than the amplitude of the Earth’s magnetic field, but 1000 times smaller than conventional magnetic resonance imaging. Safety and efficacy trials will determine the best treatment frequency for breast cancer patients.
Noninvasive sound technology breaks down liver tumors in rats, kills cancer cells and spurs the immune system to prevent further spread -- an advance that could lead to improved cancer outcomes in humans.
Researchers at Wake Forest School of Medicine have shown that a targeted therapy using non-thermal radio waves is safe to use in the treatment of hepatocellular carcinoma (HCC), the most common type of liver cancer. The therapy also showed a benefit in overall survival.
"Squires’ research lab is developing tools to manipulate and control quantum sensors in a biological system, including a technique that uses electric potentials as “walls” to keep the quantum sensor floating in one place without touching it. Squires expects this “arsenal” of nanoscale biophysical tools to provide new kinds of information."
Researchers shrunk a deadly glioblastoma tumor by more than a third using a helmet generating a noninvasive oscillating magnetic field that the patient wore on his head while administering the therapy in his own home. The 53-year-old patient died from an unrelated injury about a month into the treatment, but during that short time, 31% of the tumor mass disappeared. The autopsy of his brain confirmed the rapid response to the treatment.
As part of the work, it was shown that low-frequency EMF shows an inhibitory effect on the proliferation of primary cancer cells, diminishing their migratory, invasive, and metastatic abilities. It also increases the apoptosis of cancer cells and the amount of reactive oxygen species. Based on the results of our research, we want to point up that the effect of ELF-EMF depends on a specific metabolic state or at a specific stage in the cell cycle of the cells under study.
Experimenting with a magnetic field almost 1M times stronger than that of the Earth, researchers in the Scholes Group were able to modify the optoelectronic properties of model nonmagnetic organic chromophores. The modifications, according to the paper, arise from the induction of ring currents in the aromatic molecules.
For the experiment, researchers chose a model aromatic chromophore called a phthalocyanine, which has a molecular structure similar to chlorophyll -- nature's light absorber -- but with stronger absorption of visible light and higher stability. The calculations on this model phthalocyanine compound and its aggregates showed clear, magnetic field-dependent changes to phthalocyanine's ability to absorb light. These results mark the first to demonstrate magnetic field dependent changes to the absorption spectrum of diamagnetic molecules. But it wasn't until researchers applied the classical analogue of the solenoid that the experiment sharpened into clarity.
A solenoid is an electromagnetic device that effectively converts electrical and magnetic energy using conductive loops of wire arranged like a spring. With their thinking grounded in the behavior of solenoids, Kudisch said, they were able to rationalize that the increased magnetic field sensitivity they were observing in the phthalocyanine aggregates could depend on the relative arrangement of the phthalocyanine rings in the aggregate.
"Not only did this add extra validation to our computational support, but it also lent credence to this idea of coupled aromatic ring currents -- the ring currents of neighboring phthalocyanine chromophores in the aggregate have a geometry dependent on amplification of magnetic field sensitivity," said Kudisch. "Just like the solenoid."
Novel magnetic field effect in diamagnetic molecules -- ScienceDailyMagnetic bacteria as micropumps -- ScienceDaily
"ETH Professor Schürle and her team investigated how to use a magnetic field to control these bacteria in the laboratory as a way to direct the flow of liquids in a controlled manner. In their experiments, they applied only relatively weak rotating magnetic fields to spin the bacteria along the desired directions. And with many bacteria in a swarm, it proved possible to move the fluid surrounding them. The bacteria produce an effect similar to that of a micropump, meaning they are able to move active substances present in the fluid in different directions, for example from the bloodstream into the tumour tissue. By using superimposed magnetic fields that locally reinforce or cancel each other out, this pumping activity can be confined to a small region with pinpoint accuracy, as Schürle's team has been able to show in simulations"
Scientists have figured out a way to create and cancel magnetic fields from afar.
The method involves running electric current through a special arrangement of wires to create a magnetic field that looks as if it came from another source. This illusion has real applications: Imagine a cancer drug that could be delivered directly to a tumor deep in the body by capsules made of magnetic nanoparticles. It's not possible to stick a magnet in the tumor to guide the nanoparticles on their journey, but if you could create a magnetic field from outside the body that centered right on that tumor, you could deliver the drug without an invasive procedure.
The strength of a magnetic field decreases with distance from the magnet, and a theorem proven in 1842, Earnshaw's Theorem, says that it's not possible to create a spot of maximum magnetic field strength in empty space.
Another use might be improving transcranial magnetic stimulation, which uses magnets to stimulate neurons in the brain to treat depression. Being able to control magnetic fields at a distance could improve the targeting of transcranial magnetic stimulation, so that doctors could better focus on particular regions in the human brain.