Tuesday, February 7, 2017

Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular Carcinoma

NOTE: This article contains a lot of useful information.  A current trend in treating cancer is improving the body's immune system:

Abstract

Objective

Many studies have shown that magnetic fields (MF) inhibit tumor growth and influence the function of immune system. However, the effect of MF on mechanism of immunological function in tumor-bearing mice is still unclear.

Methods

In this study, tumor-bearing mice were prepared by subcutaneously inoculating Balb/c mice with hepatocarcinoma cell line H22. The mice were then exposed to a low frequency MF (0.4 T, 7.5 Hz) for 30 days. Survival rate, tumor growth and the innate and adaptive immune parameters were measured.

Results

MF treatment could prolong survival time (n = 28, p<0.05) and inhibit tumor growth (n = 9, p<0.01) in tumor-bearing mice. Moreover, this MF suppressed tumor-induced production of cytokines including interleukin-6 (IL-6), granulocyte colony- stimulating factor (G-CSF) and keratinocyte-derived chemokine (KC) (n = 9–10, p<0.05 or 0.01). Furthermore, MF exposure was associated with activation of macrophages and dendritic cells, enhanced profiles of CD4+ T and CD8+ T lymphocytes, the balance of Th17/Treg and reduced inhibitory function of Treg cells (n = 9–10, p<0.05 or 0.01) in the mice model.

Conclusion

The inhibitory effect of MF on tumor growth was related to the improvement of immune function in the tumor-bearing mice.

Wednesday, February 1, 2017

The change of HCN1/HCN2 mRNA expression in peripheral nerve after chronic constriction injury induced neuropathy followed by pulsed electromagnetic field therapy.

Abstract


Neuropathic pain is usually defined as a chronic pain state caused by peripheral or central nerve injury as a result of acute damage or systemic diseases. It remains a difficult disease to treat. Recent studies showed that the frequency of action potentials in nociceptive afferents is affected by the activity of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCN) family. In the current study, we used a neuropathy rat model induced by chronic constriction injury (CCI) of sciatic nerve to evaluate the change of expression of HCN1/HCN2 mRNA in peripheral nerve and spinal cord. Rats were subjected to CCI with or without pulsed electromagnetic field (PEMF) therapy. It was found that CCI induced neural cell degeneration while PEMF promoted nerve regeneration as documented by Nissl staining. CCI shortened the hind paw withdrawal latency (PWL) and hind paw withdrawal threshold (PWT) and PEMF prolonged the PWL and PWT. In addition, CCI lowers the expression of HCN1 and HCN2 mRNA and PEMF cannot restore the expression of HCN1 and HCN2 mRNA. Our results indicated that PEMF can promote nerve regeneration and could be used for the treatment of neuropathic pain.