Purpose
The redox milieu, together with reactive oxygen species (ROS) accumulation, may play a role in mediating some biological effects of extremely-low-frequency electromagnetic fields (ELF-EMF). Some of us have recently reported that a pulsed EMF (PEMF) improves the antioxidant response of a drug-sensitive human neuroblastoma SH-SY5Y cell line to pro-oxidants. Since drug resistance may affect cell sensitivity to redox-based treatments, we wanted to verify whether drug-resistant human neuroblastoma SK-N-BE(2) cells respond to a PEMF in a similar fashion.
Materials and methods
SK-N-BE(2) cells were exposed to repeated 2 mT, 75 Hz PEMF (15 min each, repeated 3 times over 5 days), and ROS production, Mn-dependent superoxide dismutase (MnSOD)-based antioxidant protection and viability were assessed after 10 min or 30 min 1 mM hydrogen peroxide. Sham controls were kept at the same time in identical cell culture incubators.
Results
The PEMF increased the MnSOD-based antioxidant protection and reduced the ROS production in response to a pro-oxidant challenge.
Conclusions
Our work might lay foundation for the development of non-invasive PEMF-based approaches aimed at elevating endogenous antioxidant properties in cellular or tissue models.
No comments:
Post a Comment